607 research outputs found

    Exponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension

    Full text link
    We study the time behavior of wave functions involved in tunneling through a smooth potential barrier in one dimension in the semiclassical limit. We determine the leading order component of the wave function that tunnels. It is exponentially small in 1/ℏ1/\hbar. For a wide variety of incoming wave packets, the leading order tunneling component is Gaussian for sufficiently small ℏ\hbar. We prove this for both the large time asymptotics and for moderately large values of the time variable

    Integration in TwentyOne Search and validation on the EFE Fototeca database

    Get PDF

    Optical Deconstruction of Parkinsonian Neural Circuitry

    Get PDF
    Deep brain stimulation (DBS) is a therapeutic option for intractable neurological and psychiatric disorders, including Parkinson's disease and major depression. Because of the heterogeneity of brain tissues where electrodes are placed, it has been challenging to elucidate the relevant target cell types or underlying mechanisms of DBS. We used optogenetics and solid-state optics to systematically drive or inhibit an array of distinct circuit elements in freely moving parkinsonian rodents and found that therapeutic effects within the subthalamic nucleus can be accounted for by direct selective stimulation of afferent axons projecting to this region. In addition to providing insight into DBS mechanisms, these results demonstrate an optical approach for dissection of disease circuitry and define the technological toolbox needed for systematic deconstruction of disease circuits by selectively controlling individual components

    Structural and chemical requirements for histidine phosphorylation by the chemotaxis kinase CheA

    Get PDF
    The CheA histidine kinase initiates the signal transduction pathway of bacterial chemotaxis by autophosphorylating a conserved histidine on its phosphotransferase domain (P1). Site-directed mutations of neighboring conserved P1 residues (Glu-67, Lys-48, and His-64) show that a hydrogen-bonding network controls the reactivity of the phospho-accepting His (His-45) in Thermotoga maritima CheA. In particular, the conservative mutation E67Q dramatically reduces phospho-transfer to P1 without significantly affecting the affinity of P1 for the CheA ATP-binding domain. High resolution crystallographic studies revealed that although all mutants disrupt the hydrogen-bonding network to varying degrees, none affect the conformation of His-45. N-15-NMR chemical shift studies instead showed that Glu-67 functions to stabilize the unfavored (NH)-H-delta 1 tautomer of His-45, thereby rendering the N-epsilon 2 imidazole unprotonated and well positioned for accepting the ATP phosphoryl group

    MEANING-full effects in information retrieval

    Get PDF
    This deliverable reports on testing the use and effect of the integration of the MEANING technology in the TwentyOne search engine of Irion

    Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice

    Get PDF
    Parkinson’s disease is a synucleinopathy that is characterized by motor dysfunction, death of midbrain dopaminergic neurons and accumulation of α-synuclein (α-Syn) aggregates. Evidence suggests that α-Syn aggregation can originate in peripheral tissues and progress to the brain via autonomic fibers. We tested this by inoculating the duodenal wall of mice with α-Syn preformed fibrils. Following inoculation, we observed gastrointestinal deficits and physiological changes to the enteric nervous system. Using the AAV-PHP.S capsid to target the lysosomal enzyme glucocerebrosidase for peripheral gene transfer, we found that α-Syn pathology is reduced due to the increased expression of this protein. Lastly, inoculation of α-Syn fibrils in aged mice, but not younger mice, resulted in progression of α-Syn histopathology to the midbrain and subsequent motor defects. Our results characterize peripheral synucleinopathy in prodromal Parkinson’s disease and explore cellular mechanisms for the gut-to-brain progression of α-Syn pathology

    Assessment of Automated Analyses of Cell Migration on Flat and Nanostructured Surfaces

    Get PDF
    Motility studies of cells often rely on computer software that analyzes time-lapse recorded movies and establishes cell trajectories fully automatically. This raises the question of reproducibility of results, since different programs could yield significantly different results of such automated analysis. The fact that the segmentation routines of such programs are often challenged by nanostructured surfaces makes the question more pertinent. Here we illustrate how it is possible to track cells on bright field microscopy images with image analysis routines implemented in an open-source cell tracking program, PACT (Program for Automated Cell Tracking). We compare the automated motility analysis of three cell tracking programs, PACT, Autozell, and TLA, using the same movies as input for all three programs. We find that different programs track overlapping, but different subsets of cells due to different segmentation methods. Unfortunately, population averages based on such different cell populations, differ significantly in some cases. Thus, results obtained with one software package are not necessarily reproducible by other software

    Paracrine delivery of therapeutic biologics for cancer

    Get PDF
    A fundamental goal of cancer drug delivery is to achieve sufficient levels within the tumour without leading to high systemic concentrations that might cause off-target toxicities. In situ production of protein-based therapeutics by tumour cells provides an attractive alternative to treatment with repeated high bolus injections, as secretion by the tumour itself could provide high local concentrations that act in a paracrine fashion over an extended duration. For this purpose, we have developed a non-oncolytic adenoviral delivery system that allows for targeting of Ad5 to discrete cell types by redirecting viral tropism to cell surface biomarkers through the use of interchangeable adapters. Furthermore, we recently described the engineering of a protein-based ‘shield’ that is coated on the Ad5 capsid, which, together with the retargeting adapters, allows for improved tumour specificity and prevention of viral clearance. To test this delivery strategy in vivo, SCID-beige mice bearing orthotopic BT474 xenografts were treated with three doses of either a cancerspecific, non-replicative Ad5 that encodes a secreted anti-HER2 antibody, trastuzumab, in its genome, or with the protein therapeutic itself (Herceptin¼). We have employed state-of-the-art whole tumour clearing and imaging with confocal microscopy at high spatial resolution in 3D to assess biodistribution, and large volumetric imaging has revealed that the secreted therapeutic diffuses significantly throughout the tumour leading to a therapeutic effect and delayed tumour outgrowth. Moreover, the systemic concentration of antibody is significantly reduced with viral delivery, suggesting that paracrine delivery may be a promising strategy for delivery of biologics with narrow therapeutic indices

    Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo

    Get PDF
    Major obstacles faced by neuroscientists in attempting to unravel the complexity of brain function include both the heterogeneity of brain tissue (with a multitude of cell types present in vivo) and the high speed of brain information processing (with behaviorally relevant millisecond-scale electrical activity patterns). To address different aspects of these technical constraints, genetically targetable neural modulation tools have been developed by a number of groups (Zemelman et al., 2002; Banghart et al., 2004; Karpova et al., 2005; Lima and Miesenbock, 2005; Thompson et al., 2005; Chambers et al., 2006; Tan et al., 2006; Gorostiza et al., 2007; Lerchner et al., 2007; Szobota et al., 2007). One approach recently brought to neurobiology, combining both high speed and genetic targeting, is based on a family of fast light-responsive microbial opsins including halorhodopsins (e.g., NpHR) and channelrhodopsins (e.g., ChR2) (for review, see Zhang et al., 2007b). These microbial opsins are single-component transmembrane conductance regulators encompassing light sensitivity and fast membrane potential control within a single open reading frame, which can be used to achieve fast bidirectional control of specific cell types even in freely moving animals (Adamantidis et al., 2007; Zhang et al., 2007a). Although the basic functioning of these tools has been reviewed previously (Zhang et al., 2007b), here we describe a collection of targeting and readout strategies designed for rapid and flexible application of the microbial opsin system, and provide pointers to the relevant literature. Combinations of these multiple levels of targeting and readout define an evolving toolbox that may open up new possibilities for basic neuroscience investigation
    • 

    corecore